Many-body levels of optically excited and multiply charged InAs nanocrystals modeled by semiempirical tight binding

نویسندگان

  • Seungwon Lee
  • Jeongnim Kim
  • Lars Jönsson
  • John W. Wilkins
  • Garnett W. Bryant
  • Gerhard Klimeck
چکیده

Many-body levels of optically excited and multiply charged InAs nanocrystals are studied with the semiempirical tight-binding model. Single-particle levels of unstrained spherical InAs nanocrystals are described by the spds* nearest-neighbor tight-binding model including spin-orbit coupling. For optically excited InAs nanocrystals, first-order corrections of electron-hole Coulomb and exchange interaction to exciton levels and the oscillator strengths of the exciton levels determine several low-lying, bright-exciton levels. The origin of the large oscillator strengths of the bright exciton levels is explained by the analysis of dominant angular momenta of exciton envelope functions. Good agreement with photoluminescence excitation experiments is achieved for the size dependence of the three lowest bright-exciton energies of InAs nanocrystals with radius larger than 20 Å. For multiply charged InAs nanocrystals, polarization of the nanocrystal environment is approximated by modeling the environment with a uniform dielectric medium. This polarization model incorporated into the tight-binding model provides a reasonable description of electron and hole addition energies in scanning tunneling spectroscopy experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical signatures of coupled quantum dots.

An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the o...

متن کامل

Band-Structure Effects on the Performance of III-V Ultrathin-Body SOI MOSFETs

This paper examines the impact of band structure on deeply scaled III–V devices by using a self-consistent 20-band sp3d5s∗-SO semiempirical atomistic tight-binding model. The density of states and the ballistic transport for both GaAs and InAs ultrathin-body n-MOSFETs are calculated and compared with the commonly used bulk effective mass approximation, including all the valleys (Γ, X , and L). ...

متن کامل

Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling.

Quantum computation requires a continuous supply of rapidly initialized qubits for quantum error correction. Here, we demonstrate fast spin state initialization with near unity efficiency in a singly charged quantum dot by optically cooling an electron spin. The electron spin is successfully cooled from 5 to 0.06 K at a magnetic field of 0.88 T applied in Voigt geometry. The spin cooling rate i...

متن کامل

Mapping of few-electron wave-functions in semiconductor nanocrystals - evidence of exchange interaction

The influence of the tip-substrate bias induced electric field in a scanningtunneling-spectroscopy experiment on charged InAs nanocrystals is studied. Calculating the ground and first excited many-particle state for five electrons occupying the quantum dot reveals a Stark-induced reordering of states by increasing the electric field strength. It is shown that this reordering of states is accomp...

متن کامل

Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes

The fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002